

Pioneering GTPase and Oncogene Product Development since 2010

Configuration-specific Monoclonal Antibody Based

Ga_o Activation Assay Kit (30 Assays)

Cat. # 80901

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC APPLICATIONS

Support:

Web:

610-945-2007

info@neweastbio.com

www.neweastbio.com

Ga_o Activation Assay Kit Protocol Cat. # 80901

Introduction

A. Background

A structurally diverse repertoire of ligands, from photons to large peptides, activates G protein-coupled receptors (GPCRs) to elicit their physiological functions. Ligand-bound GPCRs, in turn, function as guanine nucleotide exchange factors catalyzing the exchange of GDP bound on the Ga subunit with GTP in the presence of G $\beta\gamma$, causing the dissociation of the Ga subunit from the G $\beta\gamma$ dimer to form two functional units (Ga and G $\beta\gamma$). Both Ga and G $\beta\gamma$ subunits signal to various cellular signaling pathways. Based on the sequence and functional homologies, G proteins are grouped into four families: Gs, Gi, Gq, and G12.

 Ga_i family (including Ga_o) is the largest family of G proteins. They relay signals from many GPCRs to regulate various biological functions. There were no direct methods to measure the activation of Ga_o proteins by receptors (until this assay kit). Most reports used one of the downstream pathways, i.e. the inhibition of adenylyl cyclases, as a readout.

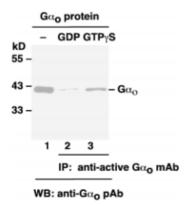
B. Assay Principle

NewEast Biosciences Ga_{\circ} Activation Assay Kit uses configuration-specific anti- Ga_{\circ} -GTP Mouse monoclonal antibody to measure Ga_{\circ} -GTP levels either from cell extracts or from in vitro GTP γ S loading Ga_{\circ} activation assays. Anti- Ga_{\circ} -GTP mouse monoclonal antibody is first incubated with cell lysates containing Ga_{\circ} -GTP. Next, the GTP-bound Ga_{\circ} is pulled down by protein A/G agarose. Finally, the precipitated Ga_{\circ} -GTP is detected through immunoblot analysis using anti- Ga_{\circ} mouse monoclonal antibody.

C. Kit Contents

This kit contains enough reagents for approximately 30-35 pull-down assays.

Reagent	Cat. #	Quantity	Storage
Anti-Ga₀-GTP Mouse Monoclonal Antibody	26907	30 µL	-20°C
Protein A/G Agarose	30301	600 µL	4°C
5X Assay/Lysis Buffer	30302	30 mL	4°C
Anti-Ga _o Rabbit Polyclonal Antibody	21015	50 μL	-20°C
100X GTPγS	30303	50 μL	-20°C
100X GDP	30304	50 μL	-20°C



D. Materials Needed but Not Supplied

- 1. Stimulated and non-stimulated cell lysates
- 2. Protease inhibitors
- 3. 4°C tube rocker or shaker
- 4. 0.5 M EDTA at pH 8.0
- 5. 1.0 M MgCl₂
- 6. 2X reducing SDS-PAGE sample buffer
- 7. Electrophoresis and immunoblotting systems
- 8. Immunoblotting wash buffer such as TBST (10 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.05% Tween-20)
- Immunoblotting blocking buffer (TBST containing 5% Nonfat Dry Milk or 3% BSA)
- 10. ECL Detection Reagents

E. Example Results

The following figure demonstrates example results seen with the Ga_0 Activation Assay Kit. For reference only.

 $\label{eq:Ga_o} \textbf{Ga_o} \mbox{ Activation Assay. Purified Ga_o proteins were loaded as a control (lane 1) or immunoprecipitated after treated with GDP (lane 2) or GTP\(gamma\)S (lane 3). Immunoprecipitation was done with the anti-Ga_o-GTP mouse monoclonal antibody (Cat. # 26907). Immunoblot was with an anti-Ga_o rabbit polyclonal antibody (Cat. # 21015).$

Assay Procedure

A. Reagent Preparation

Support:

Web:

1X Assay/Lysis Buffer: Shake the 5X Stock Buffer (Cat. # 30302) briefly and dilute with 4 times deionized water to make 1X buffer. Just prior to usage, add protease inhibitors such as 1 mM PMSF, 10 μ g/mL leupeptin, and 10 μ g/mL aprotinin.

610-945 2007

info@neweastbio.com

www.neweastbio.com

Ga_o Activation Assay Kit Protocol Cat. # 80901

B. Sample Preparation

Adherent Cells

- 1. Culture cells (one 10-cm plate) to approximately 80-90% confluence ($\sim 10^7$ cells). Stimulate the cells with activator or inhibitor as desired.
- Aspirate the culture media and wash twice with ice-cold PBS buffer.
- Completely remove the final PBS wash and add ice-cold 1X Assay/Lysis Buffer (See Reagent Preparation) to cells (0.5-1 mL per 10 cm tissue culture plate).
- 4. Place the culture plates on ice for 10-20 minutes.
- **5.** Detach the cells from the plates by scraping with a cell scraper.
- **6.** Transfer the lysates to appropriate size tubes and place them on ice.
- 7. If nuclear lysis occurs, the cell lysates may become viscous and difficult to pipette. If this occurs, lysates can be passed through a 27½-gauge syringe needle 3-4 times to shear the genomic DNA.
- **8.** Clear the lysates by centrifuging at 12,000 \times g and 4°C for 10 minutes.
- 9. Collect the supernatant into a tube and store the sample (~1-2 mg of total protein) on ice for immediate use, or snap freeze and store it at -70°C for the future use.

Suspension Cells

- Culture cells and stimulate with activator or inhibitor as desired.
- Perform a cell count and then pellet the cells through centrifugation.
- **3.** Aspirate the culture media and wash twice with ice-cold PBS.
- 4. Completely remove the final PBS wash and add ice-cold 1X Assay/Lysis Buffer (See Reagent Preparation) to the cell pellet (0.5-1 mL per 10⁷ cells).
- **5.** Lyse the cells by repeated pipetting.
- Transfer the lysates to appropriate size tubes and place them on ice.
- 7. If nuclear lysis occurs, the cell lysates may become viscous and difficult to pipette. If this occurs, lysates can be passed through a 27½-gauge syringe needle 3-4 times to shear the genomic DNA.
- Clear the lysates by centrifuging at 12,000 x g and 4°C for 10 minutes.
 - Collect the supernatant into a tube and store the sample (\sim 1–2 mg of total protein) on ice for immediate use, or snap freeze and store it at -70°C for the future use

C. In vitro GTPγS/GDP Protein for Positive and Negative Controls

Note: In vivo stimulation of cells will activate approximately 10% of the available Ga_{\circ} , whereas in vitro GTP γ S protein loading will activate nearly 90% of Ga_{\circ} .

- 1. Aliquot 0.5 mL of cell extract (or 1 μg of purified Ga $_{\circ}$ protein) into two microcentrifuge tubes.
- 2. To each tube, add 20 μL of 0.5 M EDTA (final concentration of 20 mM).
- 3. Add 5 μL of 100 X GTPyS (Cat. # 30303) to the first tube as a positive control.
- **4.** Add 5 μ L of 100 X GDP (Cat. # 30304) to the second tube as a negative control.
- **5.** Incubate both tubes at 30°C for 30 minutes with agitation.
- 6. Stop loading by placing the tubes on ice and adding 32.5 μ L

of 1 M MgCl₂ (final concentration of 60 mM).

D. Affinity Precipitation of Activated G Protein

- **1.** Aliquot 0.5-1 mL of cell lysates (about 1 mg of total cellular protein) to a microcentrifuge tube.
- **2.** Adjust the volume to 1 mL with 1X Assay/Lysis Buffer (See Reagent Preparation).
- 3. Add 1 µL anti-Ga₀-GTP antibody (Cat. # 26907).
- **4.** Prepare the protein A/G Agarose bead slurry (Cat. # 30301) by resuspending through vertexing or titrating.
- 5. Quickly add 20 µL of resuspended bead slurry to above tube.
- 6. Incubate the tube at 4°C for 1 hour with gentle agitation.
- **7.** Pellet the beads through centrifugation at 5,000 x g for 1 min.
- **8.** Aspirate and discard the supernatant (making sure not to disturb or remove the bead pellet).
- **9.** Wash the beads 3 times with 0.5 mL of 1X Assay/Lysis Buffer, centrifuging and aspirating each time.
- **10.** After the third wash, pellet the beads through centrifugation and carefully remove all the supernatant.
- 11. Resuspend the bead pellet in 20 μL of 2X reducing SDS-PAGE sample buffer.
- 12. Boil the sample for 5 minutes.
- **13.** Centrifuge it at 5,000 x g for 10 seconds.

E. Western Blot Analysis

- Load 15 µL/well of pull-down supernatant to a polyacrylamide gel (17%). It is recommended to include Prestained Protein Markers (as an indicator of a successful transfer in step 3 below).
- Perform SDS-PAGE following the manufacturer's instructions.
- **3.** Transfer the gel proteins to a PVDF or nitrocellulose membrane following the manufacturer's instructions.

Note: Steps 4-11 are at room temperature with agitation

- **4.** Following electroblotting, immerse the PVDF membrane in 100% Methanol for 15 seconds, and then allow it to dry at room temperature for 5 minutes.
 - **Note:** If Nitrocellulose is used instead of PVDF, step 4 Should be skipped.
- **5.** Block the membrane with 5% non-fat dry milk or 3% BSA in TBST for 1 hr at room temperature with constant agitation.
- **6.** Wash the blotted membrane three times with TBST, 5 minutes each time.
- 7. Incubate the membrane with anti-Ga_o Rabbit polyclonal Antibody (Cat. # 21015), which is freshly diluted 1:50~500 (depending on the amount of Ga_o proteins in your sample) in 5% non-fat dry milk or 3% BSA in TBST, for 1-2 hr at room temperature with constant agitation or at 4°C overnight.
- **8.** Wash the blotted membrane three times with TBST, 5 minutes each time.
- **9.** Incubate the membrane with a secondary antibody (Cat. # 29002), which is freshly diluted 1:1000 in 5% non-fat dry milk or 3% BSA in TBST, for 1 hr at room temperature with constant agitation.
- **10.** Wash the blotted membrane three times with TBST, 5 minutes each time.
- 11.Use the detection method of your choice such as ECL.

610-945 2007

info@neweastbio.com

www.neweastbio.com

Support:

Web: